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ABSTRACT

IMAGE-TO-IMAGE TRANSLATION FOR FACE
ATTRIBUTE EDITING WITH DISENTANGLED

LATENT DIRECTIONS

Yusuf Dalva

M.S. in Computer Engineering

Advisor: Ayşegül Dündar Boral

June 2023

We propose an image-to-image translation framework for facial attribute editing

with disentangled interpretable latent directions. Facial attribute editing task

faces the challenges of targeted attribute editing with controllable strength and

disentanglement in the representations of attributes to preserve the other at-

tributes during edits. For this goal, inspired by the latent space factorization

works of fixed pretrained GANs, we design the attribute editing by latent space

factorization, and for each attribute, we learn a linear direction that is orthogonal

to the others. We train these directions with orthogonality constraints and dis-

entanglement losses. To project images to semantically organized latent spaces,

we set an encoder-decoder architecture with attention-based skip connections.

We extensively compare with previous image translation algorithms and editing

with pretrained GAN works. Our extensive experiments show that our method

significantly improves over the state-of-the-arts.

Keywords: Image-to-image translation, Generative Adversarial Networks, Latent

Space Manipulation, Face Attribute Editing.

iii



ÖZET

AYRIŞTIRILMIŞ ÖRTÜLÜ VEKTÖRLERLE YÜZ
ÖZELLİKLERİ DÜZENLEME İÇIN RESİMDEN

RESİME ÇEVİRİ

Yusuf Dalva

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Ayşegül Dündar Boral

Haziran 2023

Bu çalışmada yüz özelliklerini düzenlemek için, ayrıştırılmış ve yorumlan-

abilir örtülü vektörler ile bir resimden resime çeviri sistemi önerilmektedir.

Çalışmamızın odak noktası olan yüz özelliklerini düzenleme görevi, belirli bir

özelliği kontrol edilebilir bir miktarda düzenleme ve bu süreçte diğer özellikleri

koruyan ayrışık gösterimler öğrenme gibi zorluklara sahiptir. Bu zorlukları

aşabilmek amacıyla önerilen sistemimizde, önceden eğitilmiş çekişmeli üretken

ağlar (GAN) üzerinde uygulanan örtülü uzay ayrıştırması çalışmalarından il-

ham alarak, sistemimizde bulunan ve her biri farklı bir özelliği modelleyen

diğer vektörlere dik bir doğrusal vektör elde ediyoruz. Sistemimiz, bu doğrusal

vektörleri öğrenmek için diklik ve ayrıştırma üzerine optimizasyon fonksiyon-

ları kullanmaktadır. Önerilen sistem, düzenlenmek istenen yüz resimlerini an-

lamsal olarak düzenlenmiş örtülü uzaya yansıtmak amacıyla kodlayıcı ve kod

çözücüden oluşan ve dikkat mekanizması ile atlamalı bağlantılar içeren bir ağ

mimarisi kullanmaktadır. Önerilen sistemin etkinliğini göstermek için, yüz

özelliklerini düzenleme görevinde en iyi performansı gösteren modellerle de-

taylı karşılaştırmalar sunulmaktadır. Karşılaştırmalarımızda da görüldüğü gibi,

çözümümüz bu görev için kullanılan güncel modellerden daha iyi bir performans

göstermektedir.

Anahtar sözcükler : Resimden resime çeviri, Çekişmeli Üretken Ağlar, Örtülü

Uzay Manipulasyonu, Yüz Özellikleri Düzenleme.
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Chapter 1

Introduction

The task of image-to-image translation has experienced a significant amount of

progress which aims to learn a mapping between two different imaging domains

[1, 2, 3, 4, 5, 6, 7, 8]. As a sub-field of the task, facial attribute editing aims

to translate a face image concerning a given semantic while preserving the other

properties of the image. With the use cases of the task in applications focused on

entertainment, there have been significant improvements in the methods focusing

on Generative Adversarial Networks (GANs) based solutions [9, 10, 11, 12, 13, 14].

As the task aims to edit the given face image in a way that the target semantic is

edited, but the remaining would be preserved, facial attribute editing is considered

one of the most challenging translation tasks where humans can easily assess the

quality of the edit on whether the identity of the input changes or not. A visual

overview of the task is shown in Fig. 1.1.

The current efforts on the problem approach the task from two different view-

points. One aims to learn an end-to-end network for the target translation, and

the other focuses on manipulating the latent codes of pretrained GANs. In the

first end, different architectures for the image translation task are offered, which

typically involve two networks, where one is for encoding the style of the image

and the other is for performing the translation by injecting the extracted styles

1



Input Smile Gender Age Hair Color Bangs

Figure 1.1: VecGAN image translation results. The first column shows the source
images, and the other columns show the result of editing a specific attribute. Each
edited image has a semantic value opposite to the input image with respect to
the target attribute. Only for the hair color semantic, we translate the image to
one of three semantics, black, blonde, and brown hair, where we illustrate black
hair and blonde hair edits above.

[9, 15, 13]. In this approach, a style or an attribute is usually encoded from an-

other image or sampled from a distribution. As facial attribute editing aims to

achieve disentangled translations, the attributes in both the editing and encoding

phases must be disentangled.

With this objective, works focus on style encoding and iterate using a shared

style code, SDIT [16], to eclectic style codes, StarGANv2 [9], to hierarchical

disentangled styles, HiSD [15]. Among these works, HiSD [15] learns styles of

each attribute independently, namely for the bangs, eyeglasses, and hair color

semantics, and introduces a translator network to apply local edits with attention

masks, which enables avoiding global edits. Even though such an approach proves

its success on three local editing tasks, it is not tested for tasks targeting global

edits, e.g., age, smile, and gender. In addition, such methods cannot modify the

style codes to control the intensity of the edited attribute (e.g., blondness in hair

color editing) straightforwardly.
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The second class of methods for facial attribute editing task builds on well-

trained generative models with the motivation of benefiting from the well-

organized feature space of such networks. In recent approaches, several studies

select StyleGAN2 [17] as the pretrained generator, relying on its ability to orga-

nize the latent space as disentangled representations with semantically meaningful

directions. Such approaches have two steps; in the first step, an input image is

embedded in the generative model’s latent space by training an additional en-

coder for the task [18, 19, 20, 21] or via latent optimization [22, 23]. Following

this step, the embedded latent code is modified based on the discovered latent

directions such that a transformation with such directions results in an edited

image after decoding. The task of embedding images to generative models’ la-

tent space experienced significant improvements on the fixed pretrained GANs

[24, 25, 26, 27, 28]. These models are referred to as StyleGAN inversion-based

methods throughout this thesis.

However, such models are not trained end-to-end. Therefore, the encoding

process cannot guarantee a latent representation that is accurate enough to rep-

resent the input image in the latent space of the selected pretrained generator,

which limits editability. As a result of such limitation, the encoding process may

lack the ability to faithfully reconstruct the input image, which fails to match the

objective of preserving identity during editing. Additionally, since the generator

is not explicitly trained for such a translation task, there is no guarantee that the

directions learned for different semantics would be disentangled (e.g., eyeglasses

versus age).

To overcome the challenges mentioned above in the facial attribute editing task,

we propose a novel image-to-image translation framework, VecGAN, an end-to-

end approach empowered by interpretable latent directions learned in training

time. Unlike the other efforts in end-to-end image translation approaches, our

framework does not require a separate style encoder. Furthermore, it performs the

translation in the latent space directly by the latent directions learned. The direc-

tions for attribute editing are learned in the latent space with a disentanglement-

focused objective, which encourages learning linearly independent directions to

perform identity-preserving translations. The other component of our framework

3



is the controllable strength of semantic change, which models the editing intensity

with a scalar value. This scalar can be sampled from a distribution or extracted

from a reference image by projecting it into the latent space. With such a de-

sign, VecGAN achieves significant improvements over state-of-the-art methods

for global and local edits and provides a control mechanism for editing strength.

VecGAN is motivated by combining the two approaches in image editing, where

an end-to-end trainable network is offered that perform edits in the latent space.

This design is encouraged by the findings that well-trained generative models or-

ganize their latent space as disentangled representations with semantically mean-

ingful directions [26, 24, 29]. These works show that images can be mapped

to the GANs’ latent space, and edits can be achieved by manipulating latent

space. However, as these models are not trained end-to-end, and the input image

may not match the imaging distribution learned by the pretrained generator, the

results are sub-optimal, where we address the problem by adopting end-to-end

training.

To enable VecGAN, we adopt a deeper encoder-decoder architecture compared

to the preceding image-to-image translation methods. Previous methods, such

as HiSD [15], use a network consisting of a small encoder-decoder structure that

downsamples the input image only by four times. As we want to achieve an

organization in the latent space to enable us to learn attribute-specific latent

directions, images should be encoded into a spatially smaller feature space. We

enable this behavior with a deep encoder-decoder architecture, allowing our net-

work to understand the image completely. Even though such an architecture

enables understanding an input image at the semantic level with the improved

receptive field, the network then faces the problem of reconstructing all details

in the input image. To solve this problem, we use an attention-based skip con-

nection between the encoder and decoder, which enables information flow with

feature selection capabilities. In summary, our main contributions are:

• We propose VecGAN, an image-to-image translation framework trained

end-to-end with interpretable latent directions. Unlike previous works, our

approach achieves local and global edits with a single deep encoder-decoder

4



structure instead of a separate style network.

• VecGAN enables both attribute strength manipulation and attribute

strength copy with the control knob proposed on the translation strength.

As we rely on a latent code learned by an encoder for editing, we can per-

form reference-guided manipulations on a shared encoder. To do so, we

obtain the latent vectors corresponding to the input and reference images

and then manipulate the desired attribute by projection using the learned

directions.

• To train VecGAN, we propose a novel objective to enable both learning

linearly independent latent directions and stable training for our framework.

• We introduce an attention-based skip connection mechanism to enable in-

formation selection in the residual connection.

• We compare our method with several state-of-the-art image translation

methods, especially with popular pretrained GAN-based models. We pro-

vide results with an extensive number of metrics for quality, attribute edit

accuracy, identity, and background preservation. Our results show the ef-

fectiveness of our framework with significant improvements over the state-

of-the-arts.

• We report metrics as the strength of editing increases for our and competing

methods. We also analyze the projected style codes and show that they can

classify the targeted attributes of images, e.g., hair color and smile.
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Chapter 2

Related Work

2.1 Image-to-Image Translation Networks

Image-to-image translation algorithms aim at preserving a given content from

the input image while changing targeted attributes. They find a wide range

of applications from translating semantic maps into RGB images [2, 4, 30],

RGB images to portrait drawings [31] and very popularly to editing faces

[9, 10, 11, 12, 15, 32, 33, 34]. These algorithms set an encoder-decoder archi-

tecture and train the models with reconstruction and adversarial losses [35]. For

facial attribute editing, the problem is formulated as the target domain contains

the target attribute and the input domain does not, where the translation occurs

from the input domain to the target domain [15].

When the translation is designed in a unimodal setting, images are processed

with an encoder and decoder to output translated images from one domain to the

other [2] where the mapping between domains is one-to-one. The shortcoming

of such a setup is that a single input image may correspond to multiple possible

outputs, which makes the translation problem ambiguous. Because of that, multi-

modal image translation models are proposed in which style is encoded separately

from another image or sampled from a distribution [36, 9]. In such approaches, the

6
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Figure 2.1: Overview of different Image-to-Image translation methods for facial
attribute editing compared to our proposed approach. Combining end-to-end ap-
proaches with inversion-based methods, we learn an end-to-end trainable trans-
lation network with learnable latent directions.
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generator, decoder, receives style and content information. This information can

be combined either by a channel-wise concatenation [37], or by combining with

a mask [15]. Alternatively, style and content information may be fed separately

to the decoder network, where features representing the content pass through

convolutional layers and style features goes through instance normalization blocks

[36, 38]. Such works use two encoders, one for encoding style features and the

other for encoding content features [15, 39]. However, such a combination of

features makes the definition of style ambiguous. Usually, style is referred to

the domain attributes one wants to change, and the content is the rest of the

attributes, which is a vague problem definition. In this work, we design the

attributes as learnable linear directions in the latent space, and we do not employ

separate style and content encoders. Instead, we use a single encoder, resulting

in a more intuitive framework.

2.2 Editing with pretrained GANs

Facial attribute editing is also shown to be possible with pretrained GANs. State-

of-the-art GAN models organize their latent space with interpretable directions

[40, 17, 41] such that moving along the direction only changes one image attribute.

These directions are explored in supervised [24] and unsupervised ways [25, 26,

27], and many directions are found for face editing, e.g., directions that change

the smile, pose, age attributes are found, to name a few. To edit a facial attribute

of an input image, one needs to project the image to a latent code in GANs’ latent

space such that the generator reconstructs the input image from this latent code.

Various architectures [19, 20] and objectives proposed to project an image to

GANs’ embedding. However, they suffer from reconstruction-editability trade-off

[18]. That is, in one end where faithful reconstruction is promised, it may not lie

in the actual distribution of GANs’ latent space. Therefore, the directions do not

work as expected, which prevents editing the image. Conversely, if the projection

is close to the actual distribution, then the reconstruction is poor. We also show

this behavior in Sec. 4.4 when comparing our method with state-of-the-art editing

with pretrained GANs methods.

8



Even though these methods are not as successful as end-to-end trainable image-

to-image translation networks, it is still quite remarkable when the generative

network is only taught to synthesize realistic images; it organizes the use of latent

space such that linear shifts on them change a specific attribute. Inspired by these

findings, our image-to-image translation framework is designed similarly so that a

linear shift in the encoded features is expected to change a single attribute of the

input image. Unlike previous works, our framework is trained end-to-end for the

translation task, allowing reference-guided attribute manipulation via projection,

and does not suffer from the reconstruction-editability trade-off. We compare our

approach with the existing methods in Fig. 2.1.

9



Chapter 3

Method

In this section, we provide an overview of the generator architecture and the

training set-up. We follow the hierarchical labels defined by [15]. For a single

image, its attribute for tag i ∈ {1, 2, ..., N} can be defined as j ∈ {1, 2, ...,Mi},
where N is the number of tags (semantic categories) and Mi is the number of

attributes for tag i. For example, i can be the hair color tag, and attribute j

can take the value of black, brown, or blonde. A visual overview of the tags and

attributes included in our framework is provided in Fig. 3.1.

Our framework has two main objectives. As the main task, we aim to perform

the image-to-image translation task in a feature (tag) specific manner. While

performing this translation, as our secondary objective, we also want to obtain

an interpretable feature space that allows us to perform tag-specific feature in-

terpolation.

3.1 Generator Architecture

For the image-to-image translation task, we set an encoder-decoder based archi-

tecture with a latent space translation module in the middle, as given in Fig.

3.2. We perform the translation in the encoded latent space, e, which is obtained

10



Bangs
With Bangs

Without Bangs

Eyeglasses
With Eyeglasses

Without Eyeglasses

Hair Color

Black Hair

Brown Hair

Blonde Hair

Tags Attributes

Age
Young

Not Young

Gender
Male

Not Male

Smile
Smiling

Not Smiling

Tags Attributes

Figure 3.1: Label organization for the proposed framework. Inspired by the
hierarchical labeling introduced in [15], we define our labels for bangs, eyeglasses,
hair color, gender, age, and smile tags. Next to the labels, we provide a sample
image for each tag-attribute pair.

by e = E(x) where E refers to the encoder (Throughout this thesis, we use e

for encoded features and d for decoded features, for the subjected feature resolu-

tion). The encoded features go through a transformation T , which is discussed

in the next section. The transformed features are then decoded by the decoder

G to reconstruct the translated images. The image generation pipeline following

feature encoding is described in Eq. 3.1.

e′ = T (e, α, i)

x′ = G(e′) (3.1)

Previous image-to-image translation networks [15, 39, 9] set a shallow encoder-

decoder architecture to translate an image while preserving the content and a

separate deep network for style encoding. In most cases, the style encoder includes

separate branches for each tag.

The shallow architecture used to translate images prevents the model from

making drastic changes in the images, which helps to preserve the person’s iden-

tity. Our framework is different as we do not employ a separate style encoder and

instead have a deep encoder-decoder architecture for translation. As we would like

11
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Figure 3.2: Our translator is built on the idea of interpretable latent directions.
We encode images with an Encoder (E) to a latent representation from which
we change a selected tag (i), e.g. hair color with a learnable direction Ai and
a scale α. To calculate the scale, we subtract the target style scale (αt) from
the source style scale (αs). This operation corresponds to removing an attribute
in the amount present in the source and adding an attribute in the amount of
the target. To remove the image’s attribute, the source style is encoded and
projected from the source image. To add the target attribute, the target style
scale is sampled from a distribution that is mapped for the given attribute (j),
e.g. black, blonde, or encoded and projected from a reference image. We also
propose an attention-based skip connection module to transfer selected features
without an information bottleneck to the decoder.

to organize the latent space in an interpretable way during training, our frame-

work requires a full understanding of the image and, therefore, a larger receptive

field which results in a deeper network architecture. A deep architecture with

decreasing feature size, on the other hand, faces the challenges of reconstructing

all the fine details from the input image.

With the motivation of helping the network in preserving tag-independent

features such as the fine details from the background, we use attention-based

skip connections between our encoder and decoder as described in Sec. 3.3.

The architectural details of the encoder and decoder are as follows: For the

encoder, following a 1 × 1 convolution, we use 8 successive blocks that perform

downsampling, which reduces feature map dimensions to 1 × 1. In our decoder,
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we have an architecture symmetric to the encoder, which is composed of 8 suc-

cessive upsampling blocks. Except for the last downsampling block and the first

upsampling block, we use instance normalization denoted as (+IN). The channels

increase as {32, 64, 128, 256, 512, 512, 512, 1024, 2048} (for output resolution

256× 256) in the encoder and decrease in a symmetric way in the decoder. The

complete architecture for the generator is provided in Fig. 3.2 illustrating the

translation module and in Fig. 3.3 illustrating the building blocks. Each Down-

Block and UpBlock has a residual block with 3× 3 convolutional filters followed

by a downsampling or an upsampling layer, respectively. For downsampling, we

use average pooling; and for upsampling, we use nearest-neighbor. We use the

LeakyReLU activation layer (with a negative slope of 0.2) and instance normal-

ization layer in each convolutional module with the exception of the last down-

sampling and first upsampling block. The details of the building blocks of our

framework are provided in Fig. C.1.

3.2 Translation Module

To achieve a style transformation, we perform tag-based feature manipulation

in a linear fashion on the latent space. First, we set a feature direction matrix

A, which contains learnable feature directions for each tag as its rows. In our

formulation, we show the direction learned for tag i as Ai. The direction matrix

A is randomly initialized and learned during training which enables us to obtain

directions that are compatible with the latent space learned.

Our translation module is formulated in Eq. 3.2, which adds the desired shift

on top of the encoded features e similar to [25].

T (e, α, i) = e+ α× Ai (3.2)

We compute the shift by subtracting the target style from the source style as

given in Eq. 3.3 where they are represented as αt and αs respectively.
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Figure 3.3: Generator architecture of VecGAN, illustrating the building blocks
for the encoder and decoder networks shown over an example translation for age
editing. We provide the interior details of UpBlock and DownBlock structures in
Fig. C.1. In addition to structure names, we also show the presence of instance
normalization (+IN) and the number of output channels for a given block.
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α = αt − αs (3.3)

Since the translations are designed as linear steps in learnable directions, we

find the style shift by subtracting the target attribute scale from the source at-

tribute scale. This way, the same target attribute αt can have the same impact

on the translated images independent from the attributes of the original image.

For example, if our target scale corresponds to brown hair, the source scale can

be coming from an image with blonde or black hair, but since we take a step in

the difference of the scales, they can both be translated to an image with the

same shade of brown hair.

There are two alternative pathways to extract the target scale αt for a given

feature (tag) i. The first pathway, named the latent-guided path, samples a

z ∈ U [0, 1) and applies a linear transformation αt = wi,j ·z+bi,j, where αt denotes

sampled shifting scale for tag i and attribute j. We learn linear transformation

parameters wi,j and bi,j in training time. As we aim to obtain a continuous

translation over attributes (a scale modeling a continuous change in color for the

case of hair color tag), we reformulate this sampling equation as αt = (ai,j+1 −
ai,j) · z + ai,j which corresponds to sampling a point from a line segment. Since

we design the consecutive intervals with shared endpoints, we succeed in learning

a continuous scale distribution for tag i.

Here tag i can be hair color, and attribute j can be blonde, brown, or black

hair. We learn a different transformation module for each attribute, denoted as

Mi,j(z), which contains the line endpoints as its parameters. Since we learn a

single direction for every tag, e.g. hair color, this transformation module can

put the initially sampled z’s into the correct scale in the linear line based on the

target hair color attribute. As the other alternative pathway, we encode the scalar

value αt in a reference-guided manner. We extract αt for tag i from a provided

reference image by first encoding it into the latent space, er, and projecting er

by Ai as given in Eq. 3.4.
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αt = P (er, Ai) =
er · Ai

||Ai||
(3.4)

In the reference guidance set-up, we do not use the information of attribute

j, since it is encoded by the tag-specific features of the image that are found via

projection.

The source scale, αs, is obtained in the same way we obtain αt from the

reference image. We perform the projection for the tag we want to manipulate,

i, by P (e, Ai), where the latent encoding for the input image is projected on the

target latent direction for the given tag. We formulate our framework with the

intuition that the scale controls the amount of features to be added. Therefore,

especially when the attribute is copied over from a reference image, the amount

of features that will be added will be different based on the source image. For

this reason, we find the amount of shift by subtraction as given in Eq. 3.3. Our

framework is intuitive and relies on a single encoder-decoder architecture.

3.3 Attention-based Skip Connections

We benefit from attention-based skip connections that merge encoded and de-

coded features with an attention mask to enable feature-aware residual connec-

tions. Our architecture includes a skip network S, which calculates an attention

map from the concatenation of encoded and decoded features (feature resolution

is 64x64 as illustrated in Fig. 3.2). The equation summarizing our approach is

provided as Eq. 3.5 for encoded features e and decoded features d with a feature

resolution of 64x64.

d′ = e · σ(S(e||d)) + d · (1− σ(S(e||d))) (3.5)

Here, (e||d) refers to concatenation, and σ is the sigmoid function. In the

skip network architecture, we aim to compute an attention mask that reflects
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Figure 3.4: Architecture of Skip Network S, which is used for obtaining the
attention mask in our attention-based skip connections. The encoded features and
decoded features are represented as e and d, where both have feature dimensions
256×64×64. Taking the concatenation of these tensors as an input, skip network
S outputs a 256× 64× 64 attention mask m, which filters out the information to
be passed through the residual connection.

a maximal understanding of the image. In order to achieve this, we use an

architecture inspired by U-Net[42], which downscales the concatenated features

to a resolution of 256x8x8. By doing this, we achieve a mask computed with a

considerable amount of receptive field while preserving the input features with the

residual connections. We use the residual blocks from the original generator to

upsample and downsample the features (where instance normalization is enabled)

in the skip network [14] with channel size 256. A visual overview of the skip

network S is provided in Fig. 3.4.

The skip network takes both encoded and decoded features to identify which

parts should be taken from the encoded features from the original image, and

which parts should be taken from the edited decoded features.

3.4 Training pathways

We train our network using two different paths by modifying the translation paths

defined in [15]. For each iteration during training, we sample a tag i for the shift

direction, a source attribute j as the current attribute, and a target attribute
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Figure 3.5: Overview of cycle-translation path. To enable a self-supervised cycle,
we first perform a latent-guided edit using a z ∈ U [0, 1), which results in the
generation of xt. Following this initial translation, we attempt to translate back
the edited image using the input image as a reference which gives us the final
output of this path, xc.

ĵ, which is kept constant over a training batch. The two paths that the input

images undergo during training are defined below.

Non-translation path. To ensure that the encoder-decoder structure preserves

the images’ details, we reconstruct the input image without applying any style

shifts. The resulting image is denoted as xn as given in Eq. 3.6.

xn = G(E(x)) (3.6)

Cycle-translation path. We apply a cyclic translation to ensure we get a

reversible translation from a latent guided scale by using only one image as an

input. In this path, we first apply a style shift by sampling a z ∈ U [0, 1) and

obtaining target scale αt with Mi,ĵ(z) for target attribute ĵ. The translation step

uses α as the shift amount, which is obtained by subtracting the target style αt

from the source style αs. We obtain the source style scale αs by projecting the

image encoding to the target direction (αs = P (e, i)). The decoder then generates

an image, xt, as given in Eq. 3.7 where e stands for the encoded features from

input image x, e = E(x).

xt = G(T (e,Mi,j(z)− P (e, i), i)) (3.7)
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Then by using the original image x as a reference image, we aim to reconstruct

the original image by translating xt. Overall, this path attempts to reverse a

latent-guided style shift with a reference-guided shift. The second translation is

given in Eq. 3.8 where et = E(xt). A visual overview of this cyclic translation is

provided in Fig. 3.5.

xc = G(T (et, P (e, i)− P (et, i), i)) (3.8)

In our learning objectives, we use xn and xc for reconstruction and xt and

xc for adversarial losses, and Mi,j(z) for the shift reconstruction loss and for

the adversarial loss. Details about the learning objectives are given in the next

section.

3.5 Learning objectives

Given an input image xi,j ∈ Xi,j, where i is the tag to manipulate and j is the

tag-specific attribute for that image, we optimize our model with the following

objectives. In our equations, xi,j is shown as x.

3.5.1 Adversarial Objective

We learn a discriminator using an architecture with decreasing feature resolution

and increasing channel size. Like the generator, we build our discriminator with

channel sizes of {32, 64, 128, 256, 512, 512, 512, 1024, 2048}, reducing the feature

resolution to 1x1. We concatenate the extracted style αs from the input image

to this latent code and apply a 1x1 convolution. This final convolution is specific

to each tag-attribute pair, so the model can use this information.

During training, our generator performs a style shift either in a latent-guided

or a reference-guided way, resulting in a translated image. In our adversarial
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loss, we receive feedback from the two steps of the cycle-translation path. As

the first component of the adversarial loss, we feed a real image x with tag i and

attribute j to the discriminator as the real example. To give adversarial feedback

to the latent-guided path, we use the intermediate image generated in the cycle-

translation path, xt. Finally, to provide adversarial feedback to the reference-

guided path, we use the final output of the cycle-translation path xc. Only x

acts as a real image; both xt and xc are translated images and are treated as fake

images with different attributes. The discriminator aims to classify whether an

image is real or fake, given its tag and attribute. The overall adversarial objective

is given in Eq. 3.9.

Ladv = 2log(Di,j(x)) + log(1−Di,ĵ(xt))

+log(1−Di,j(xc))
(3.9)

3.5.2 Shift Reconstruction Objective

As the cycle-consistency loss performs reference-guided generation followed by

latent-guided generation, we utilize a loss function to make these two methods

consistent with each other [43, 36, 44, 15]. Specifically, we would like to obtain the

same target scale, αt, both from the mapping and the encoded reference image

generated by the mapped αt. The loss function penalizing the distance of the

mentioned style scales is given in Eq. 3.10.

Lshift = ||Mi,j(z)− P (et, i)||1 (3.10)

The parameters formulating our distance function, Mi,j(z) and P (et, i), are cal-

culated using the cycle-translation path that is described in Eq. 3.7 and 3.8.

3.5.3 Image Reconstruction Objective

In all of our training paths, the purpose is to be able to regenerate the original

image again. To supervise this behavior, we use L1 loss as our reconstruction
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objective. In our formulation, xn and xc are outputs of the non-translation and

cycle-translation paths, respectively. Formulation of the reconstruction objective

is provided in Eq. 3.11.

Lrec = ||xn − x||1 + ||xc − x||1 (3.11)

3.5.4 Orthogonality Objective

To encourage the orthogonality between directions, we use a soft orthogonality

regularization term based on the Frobenius norm, which is given in Eq. 3.12. This

orthogonality further encourages disentanglement in the learned style directions.

Lortho = ∥ATA− I∥F (3.12)

3.5.5 Disentanglement Objective

We intend to change the scale for the desired semantic in each translation. As

a reflection of this criteria, we penalize the changes in the attributes that are

not subjected to any translation. For translated tag i, using input scales α, and

edited scales α′, the disentanglement loss is formulated in Eq. 3.13 where we

penalize the scale changes that are intended to be preserved. In the formulation,

αk represents the semantic scale for tag k with a minor abuse in notation. Scales

are calculated based on the projection operation described in Eq. 3.4.

Ldis =
∑
k ̸=i

||αk − α′
k|| (3.13)

This disentanglement objective complements our orthogonality objective by

encouraging linear independence between the learned directions. When the model
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is trained with an additional disentanglement loss, we observe that orthogonality

loss drops to a lower value. In addition to this effect, disentanglement loss also en-

courages stability during training. As incompatible weight updates on the latent

directions and the encoder module would disrupt the latent space significantly

after the subjected translation, disentanglement loss achieves stability by penal-

izing such changes. The stabilizing effect of the disentanglement loss is discussed

in Sec. 4.3.2.1 with experimental results.

3.5.6 Sparsity Objective

During training, we also include an additional loss term to encourage the spar-

sity of the learned latent directions to maximize the information represented by

them. To do so, we add an L1 loss term on matrix A, which contains the latent

directions learned during training as its rows. The sparsity loss is formulated in

Eq. 3.14 where N represents the total number of directions and L represents the

dimensionality of the latent directions learned.

Lsparse =
N∑
i

L∑
l

||Ai,l|| (3.14)

3.5.7 Full Objective

Combining all of the loss components described, we reach the overall objective

for optimization as given in Eq. 3.15. We construct our overall objective with

the following hyperparameters; λa = 1, λrec = 1.5, λs = 1, λo = 1 and λsp = 0.1.

We use a learning rate of 10−4 and train our model for 600K iterations with a

batch size of 4 on a single GPU.

min
E,G,M,A

max
D

λaLadv + λsLshift + λrLrec

+λo(Lortho + Ldis) + λspLsparse

(3.15)
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Chapter 4

Experiments

4.1 Dataset and Settings

We train our model on the CelebA-HQ dataset [45], which contains 30,000 face

images. To extensively compare with state-of-the-arts, we follow two training &

evaluation protocols as follows:

4.1.1 Comparing with End-to-End Approaches

In our first setting, we follow the setup from HiSD [15] to compare our method

with end-to-end trainable image translation algorithms. Following HiSD, we use

the first 3000 images of the CelebA-HQ dataset as the test set and 27000 as the

training set. These images include annotations for different attributes from which

we use hair color, the presence of glass, and bangs attributes for translation tasks

in this setting. The images are resized to 128× 128. Throughout this thesis, this

setup is referred to as setting I.

Following the evaluation protocol proposed by HiSD [15], we compute FID

scores on the bangs addition task. For each test image without bangs, we translate
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them to images with bangs using latent-based and reference-based guidance. In

our evaluation setup, we use the images that do not contain the target attribute

as the source images to perform the translation. Using these generation results,

we report the FID metric by comparing them with images from the test set

containing the target attribute.

In all of our experiments, we calculate FID on five different generation sets to

make our measurements robust to the effect of randomness we introduce in the

sampling process. These sets include the translations of the same test images,

with randomly sampled target style scales, αt. The evaluation procedure for

latent-guided and reference-guided synthesis are as follows:

• Latent-guided evaluation: In this setup, we generate 5 images for a

given input to be edited. For each sample we generate, we sample a random

z ∈ U [0, 1).

• Reference-guided evaluation: Similar to the latent-guided setup, we

generate 5 images per input to construct the five evaluation sets we average

on. For each of these samples, we sample a random reference image with

the target tag-attribute pair from our dataset, to extract the target style

scale αt.

After constructing our evaluation sets by generating the required samples, we

calculate the FID score for each of them. Then, to report the final FID score, we

average these scores. The procedure for the construction of the mentioned image

sets is shown in Fig. 4.1.
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Figure 4.1: Constructing evaluation sets for smile addition task. On both Setting

I and II, we calculate our metrics by averaging over 5 sets of generated images.

To do so, we use 5 randomly sampled αt values as the target style scale for

translation. These scale values are obtained either from a z ∈ U [0, 1) for latent-
guided experiments or an image with the target tag-attribute pair for reference-

guided experiments.

4.1.2 Comparing with StyleGAN2-based Methods

We use our second setting to comprehensively compare our method with

StyleGAN2-based inversion and editing methods. For this setting, the train-

ing/test split is obtained by re-indexing each image in CelebA-HQ back to the

original CelebA dataset and following the standard split of CelebA. This results

in 27,176 training and 2,824 test images. Our models are trained for hair color,
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the presence of glasses, bangs, age, smiling, and gender attributes, where all of

these translations are learned simultaneously. Images are resized to 256×256 res-

olution, which is the dimension StyleGAN2-based inversion methods use. This

setup is mentioned as setting II in this thesis.

We evaluate our model on bangs, hair color, gender, age, and smile editing

tasks using the FID metric. Using this setup, we aim to evaluate our translations

with a mixed amount of feature strengths. As our translations include both global

and local edits, we demonstrate the effectiveness of our framework in terms of

image understanding. In addition to evaluating these edits by using randomly

sampled scales, as used in setting I, we also evaluate our model with translations

with increasing strength for smile removal and bangs addition tasks. To achieve

this, we set the feature strength as a constant for each iteration and increment

the target scale αt in every step.

This setup also uses additional evaluation metrics as mentioned in section

4.2 to evaluate the quality of the translations and identity preservation. In this

regard, we select the smile editing task as it requires a general understanding

of the input image and the bangs editing as it requires preserving the identity

significantly by performing local edits. By benchmarking our model in such a

way, we evaluate our framework with varying editing strengths in both local and

global editing tasks.

4.2 Metrics

We mostly build our evaluation on the FID metric as in previous works. Ad-

ditionally, for smile removal and bangs addition tasks, we evaluate our results

on other metrics, such as classification accuracy, identity preservation, and back-

ground preservation for setting II. For each of the metrics, we report the average

of the scores for the five image sets containing our generation results, except for

our analysis on translation strength with fixed style scales. We summarize the

image generation procedure in Fig. 4.1. The metrics we use are described as
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follows:

Frechet Inception Distance (FID): For the FID metric [46], we calculated

the fréchet distance between the feature tensors of original and generated images

using their mean µ and covariance matrix Σ, which are obtained by the Inception-

V3 model. The FID calculation is formulated in Eqn. 4.1. In this formulation,

µr,Σr are feature statistics for original images, and µg,Σg are statistics for the

generated images. The operation Tr(·) stands for the trace of the given matrix.

FID(µr,Σr, µg,Σg) = ||µr − µg||2 + Tr(Σr + Σg + 2(ΣrΣg)
1/2) (4.1)

We set up the FID evaluation based on the attributes that are edited. For

example, for smile addition attribute edit, we edit the images that have a negative

smile attribute from the validation set. Those become our generated images. For

the ground-truth distribution, we filter the images in our validation set for the

ones that have a positive smile attribute. Therefore, for the FID to be lower, the

edit needs to be applied since our source images come from non-smiling images

and target distribution images are smiling ones. The calculation procedure is

visualized in Fig. 4.2.

Accuracy (Acc): We train two classifiers for smile and bangs tags on the

training split of the CelebA-HQ dataset. We use an ImageNet pretrained ResNet-

50 model and fine-tune it for the corresponding classification tasks. The resulting

smile and bangs classification models achieve 95% and 96% accuracy, respectively.

We use these classifiers to evaluate the accuracy of the generated images to test if

the attribute is correctly manipulated. By doing so, we also evaluate the success

of the attribute strength manipulation capabilities of our framework by evaluating

the generated samples on changing target scales, αt. Further details about the

classification models trained are provided in Appendix B.

Identity Preservation (ID): To calculate the ID metric, we use the Curric-

ularFace model [47] to calculate the similarity between the original and generated
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Figure 4.2: FID calculation for smile addition edit. Using the images with a
negative smile attribute from our validation set as our source distribution, we
initially translate them using our framework. Following this step, the generated
images are compared with the ones having a positive smile attribute over fréchet
inception distance (FID).

images. The CurricularFace model uses ResNet-101 as a backbone for the fea-

ture extraction and outputs an embedding representing the identity of the input

image. We calculate the cosine similarity score between the output embeddings

of each original and edited image pair. The scoring process is illustrated visually

in Fig. 4.3.

Background Preservation (BG): For the BG metric, we first use the seg-

mentation masks to separate the parts of faces from the CelebAMask-HQ dataset

[48] to form background masks for images in our validation set. Using these

masks, we calculate the mean structural similarity index (MSSIM) [49] between

the backgrounds of the original and edited images, which are obtained after mask-

ing the images with the obtained background segmentation masks. The process

of calculating the BG metric is summarized in Fig. 4.4.
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Figure 4.3: Identity Preservation (ID) metric calculation for smile addition task.
After editing the input with a negative smile attribute with smile addition edit,
we feed both the generated image Iedit and input image Iin to the CurricularFace
model. Then by using the embeddings outputted from the input image ein and
the generated image eedit, we report the cosine similarity between them as the ID
score.
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Figure 4.4: Background Preservation (BG) metric calculation for smile addition
task. After editing the input image with a negative smile attribute, we multiply
both the generated image and input image with the background mask obtained
from the CelebAMask-HQ dataset [48]. Then by using the outputs of these two
multiplications, we calculate the structural similarity index [49] in between to get
the BG score for a given input image.
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Abl. Index Method Lat. Ref.

I-A

Shallow 21.30 20.94
Deep w/o skip 88.62 127.65
Deep w/ all skip 273.80 273.97
Deep w/ single skip (VecGANbase) 20.17 20.72

I-B
w/o Orthogonality 21.98 22.50
w/o Sparsity 24.07 22.43

II-A w/ Disent. 20.23 20.57

II-B
w/ Disent. + Attn. Skip 20.15 20.08
w/ Disent. + Attn. UNet Skip 19.98 19.87
w/ Disent. + Attn. UNet Skip w/ dec. 19.65 19.62

Table 4.1: Ablation study on setting I. Each ablation is labeled with an index
representing the category of the experiment. We label latent and reference-guided
results as Lat. and Ref. respectively.

4.3 Ablation Study

We conduct ablation studies on network architecture and loss objectives as given

in Table 4.1 using evaluation setting I, which is explained in Sec. 4.1.1. We

present our ablations in two parts, where we experiment on the base version first

in Sec. 4.3.1, which excludes attention-based skip connections and disentangle-

ment loss as presented in [14]. Following these ablations, we experiment on the

proposed disentanglement loss and attention-based skip connections in Sec. 4.3.2.

4.3.1 Experiments on the Base Version

The vanilla version of the proposed framework is labeled as the base version

throughout this section. Different than the final version of VecGAN, the disen-

tanglement loss and attention-based skip connections are excluded in this version.

We present ablations from two different perspectives in this section. First, we in-

vestigate the network architecture by experimenting with the network depth and

skip connection frequency (I-A). Following these ablations, we experiment on the

orthogonality loss and sparsity losses (I-B), which are two optimization objectives

that are fundamental to the success of our framework. The ablations of the base
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version are indexed as I.

4.3.1.1 Ablations on Network Architecture (I-A)

We first experiment with a shallower architecture without a skip connection in

between. This version is labeled as shallow since the encoder decreases the input

dimension from 128 × 128 to 8 × 8. Even if this version gives reasonable scores

for bangs addition edit, we are interested in a better latent space organization

to perform global edits. To do so, we use a deeper encoder-decoder architecture

where encoded latent space resolution goes as low as 1x1, and decoded to 128x128.

We refer to this architecture as deep.

Taking the deep version without any skip connections as a starting point, we

experiment with the skip connection frequency. Without any skip connections,

our framework is unable to minimize the reconstruction loss, which results in a

high FID value. On the other extreme, we conduct experiments by including skip

connections at each resolution from the encoder to the decoder. With such an

architecture, our framework is able to reconstruct the input well. However, the

latent space is not well organized since the model tends to pass all the information

through the skip connections, which instabilizes the training that results in a high

FID value. Our architecture with a single skip connection after downsampling the

input two times (using 32× 32 features with input resolution 128× 128) provides

a good balance between the information flow from the encoder to the decoder

and the latent space bottleneck.

In our experiments focusing on skip connection frequency, we formulate these

connections with a summation of the encoded (e) and decoded features (d), which

is formulated in Eq. 4.2.

d′ = e+ d (4.2)
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Figure 4.5: Qualitative results of ablation study for orthogonality loss. The bangs
tag transferred from the reference image for the provided samples. In the presence
of orthogonality loss, we observe that the bangs attribute can get disentangled
from the gender tag, which is not the case when the orthogonality loss is not
included.

4.3.1.2 Ablations on Orthogonality and Sparsity Objectives (I-B)

Following the experiments on the network architecture of the base version of

our framework, we perform ablations on the effect of loss functions. First, in

order to test our promise of learning linearly independent directions with an

orthogonality objective, we remove the orthogonality loss that is effective on

matrix A, which contains directions that are learned in training time. This change

in our objective results in worse FID scores, but more importantly, we observe

that the styles are not disentangled, e.g. changing bangs attribute changes also

adds feminine features to the input image as it can be seen in Fig. 4.5. Even

without this loss function, we observe that the orthogonality loss of matrix A

decreases but to a higher value compared to when this loss is added to the final

objective. This is because the framework and other loss objectives also encourage

the disentanglement of attribute manipulations, and it shows the significance

of the orthogonality of direction vectors. This also shows the importance of

orthogonality in style disentanglement, and this targeted loss helps improve that

significantly. We also observe that sparsity loss applied on the directional vectors

stabilizes the training and lowers the FID values.
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Figure 4.6: Ablation study between VecGANbase and VecGANfinal on bangs edit-
ing task. In addition to quantitative improvements, we also achieve more realistic
edits over our ablations.

4.3.2 Experiments on the Extended Version

Taking the base version of the framework that is presented in [14] as a starting

point, we perform two groups of experiments where one is focused on the disen-

tanglement loss and the other focuses on attention-based skip connections. With

these two incremental changes, we form the final version of our framework. A

visual comparison between the final model and the base model is provided in Fig.

4.6. The ablations building on top of the base version are indexed as II.

4.3.2.1 Ablations on Disentanglement Loss (II-A)

As our initial increment, we add the disentanglement loss to our learning objective

to further encourage learning linearly independent latent directions, in addition to

orthogonality loss. In our experiments, we observe that this loss is complementary

to orthogonality loss and lowers the orthogonality loss value even more compared

to the base model.
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Figure 4.7: FID curves on smile addition task for models trained with and with-
out disentanglement loss. In the absence of disentanglement loss, our framework
experiences sudden peaks in FID over training iterations. By adding this addi-
tional loss term, we eliminate such instabilities in training.

Different than the orthogonality loss, this objective is sensitive to the extracted

scales rather than the angles between the directions on its own, which enables

us to stabilize the training further. We explain this behavior with the fact that

the proposed loss function penalizes weight updates that harm the latent space

organization for a given direction, which results in changing scales for the other

directions. In case of updates on direction weights that disrupt the latent space,

we experience sudden peaks in FID values, which means instability in training.

We also experience the same effect in our experiments with Setting II, where the

image resolution is set to 256×256. The change in the FID metric versus training

iterations is provided for the smile addition task in Fig. 4.7 as proof of training

stability.

4.3.2.2 Ablations on Attention-based Skip Connections (II-B)

In the base version of our framework, we include skip connections from the en-

coder to the decoder, which is formulated as a summation of encoded features

with the decoded features. To enhance this mechanism, we introduce an approach
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enabling feature selection in the skip connections to ease the learning process for

our framework. We experiment with different variants of the attention-based skip

connection architectures in Table 4.1. We first experiment with attention-based

feature summation as given in Eq. 3.5 but without the U-Net architecture, in-

stead with a single layer module as well as without feeding the decoded features

to the skip network S.

As it is also shown in Table 4.1, enabling this attention mechanism impacted

our results in a positive way which lowers the FID values for bangs addition

edits. As our next step, we experiment with the effect of the receptive field

on the attention-based skip connections. To do so, we replace the attention

module with a skip network inspired by the U-Net architecture [42] as explained

in Section 3.3. Finally, we also feed the decoded features to this network with

a concatenation operation, so that the model can explore the impact of edits

on feature tensors to identify which features should be passed through the skip

connection for high-quality edits. Each of these trials resulted in incremental

improvements. Relying on our ablation study, we finalize our framework with

attention-based skip connections that use both encoded and decoded features.

The results of our ablation study are summarized in Table 4.1, where the

metrics are calculated by averaging the FID values over 5 runs, as explained in

Sec. 4.1.1.

4.4 Comparisons with Competing Methods

We extensively compare our results with competing image translation methods.

We present our comparisons with end-to-end approaches using our first evalua-

tion setting, which is explained in Sec. 4.1.1, in Table 4.2. In this setup, we

compare our method with SDIT [16], StarGANv2 [9], Elegant [11], and HiSD

[15] models, which are all end-to-end trainable image-to-image translation mod-

els. Among these methods, HiSD learns a hierarchical style disentanglement,

whereas StarGANv2 learns a mixed style code. Therefore StarGANv2, when
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translating images, also edits other attributes and does not strictly preserve the

identity. HiSD achieves disentangled style edits with its tag-specific translation

networks. However, HiSD learns feature-based local translators, an approach

known to be successful on local edits, e.g. bangs, and their model is trained

for bangs, eyeglasses, and hair color attributes. VecGAN achieves significantly

better quantitative results than HiSD both in latent-guided and reference-guided

evaluations, even though they are compared on a local edit task.

Fig. 4.8 shows reference-guided results of our final model and HiSD. As shown

in the figure, both methods achieve attribute disentanglement, they do not change

any other attribute of the image than the bangs tag. It is important to note that,

HiSD learns feature-based local translators, which is a successful approach for

local edits, e.g. bangs, eyeglasses, and hair color, but not smile, age, or gender.

Our method achieves comparable visual and better quantitative results than HiSD

on this local task and can also achieve global edits.

In our second second evaluation setup, setting II, we compare our method

with state-of-the-art StyleGAN2 inversion-based methods, e4e [18], HyperStyle

[19], HFGI [20], and StyleTransformer [21] in Table 4.3 and 4.4. We compare

the methods on local (e.g. bangs, hair color) and global (e.g. age, smile, gender)

attribute manipulations using the FID metric. For the smile and age edits, we use

the directions explored by the InterfaceGAN method [24]. For the others (e.g.

hair color, gender, bangs), we use the directions discovered by the StyleCLIP

method [29]. The strength attribute is set to the one that achieves the best FID

scores for a fair comparison.

Method Latent Reference Avg.
SDIT [16] 33.73 33.12 33.42
StarGANv2 [9] 26.04 25.49 25.77
Elegant [11] - 22.96 -
HiSD [15] 21.37 21.49 21.43
VecGANbase [14] 20.17 20.72 20.45
VecGANfinal 19.65 19.62 19.64

Table 4.2: Quantitative results for setting I on the bangs addition task. The
provided scores are obtained using the FID metric.
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Figure 4.8: Qualitative results of bangs addition edit of our final model
VecGANfinal and HiSD. Given the reference images, methods extract reference
attributes and edit input images accordingly. All methods achieve high-quality
results. It is important to note that, HiSD learns feature-based local translators,
which is a successful approach for local edits, e.g. bangs, eyeglasses, and hair
color, but not smile, age, or gender. Our method achieves comparable visual
and better quantitative results than HiSD on this local task and can also achieve
global edits.

We achieve significant improvements on the presented attributes with state-of-

the-art StyleGAN2 inversion-based methods. The quantitative results comparing

our framework with the StyleGAN2 inversion-based methods are presented in

Table 4.3 for local edits and Table 4.4 for global edits. Similar to our previous

experiments, we average over five experiments while reporting the metrics. As the

editing strength has been kept constant for StyleGAN2 inversion-based methods,

we do not apply any repetitions for reporting FID metric for them.

Our method and StyleGAN inversion-based methods both provide a knob to

control the editing attribute intensity. We obtain plots provided in Fig. 4.10 by

changing the editing attribute intensity on smile and bangs editing tasks, which

corresponds to setting the target style scale αt to a constant in our framework. As

we increase the intensity, edits become more detectable. We measure that with

a tag-specific classifier; the details of these classifiers are explained in Sec. 4.2.

Therefore, we plot FID, ID (Identity), and BG (Background Preservation) scores

with respect to the attribute intensity measured by the accuracy of the classifier.
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Bangs Hair Color
Method (+) (-) Blonde Black Brown
e4e [18] 53.29 53.62 69.26 64.92 40.93
HyperStyle [19] 41.37 47.32 60.50 59.63 35.31
HFGI [20] 40.54 45.06 67.92 60.09 35.15
StyleTran. [21] 44.66 51.91 55.96 66.64 35.15
VecGAN 27.09 31.63 37.18 49.48 34.98

Table 4.3: Quantitative results for setting II for local edits. Among the edits
performed by our framework, we label bangs and hair color edits as local editing
tasks. The results presented are in terms of the FID metric.

Smile Age Gender
Method (+) (-) (+) (-) Female Male
e4e [18] 35.01 37.91 52.28 60.38 36.55 62.27
HyperStyle [19] 25.25 24.64 52.23 44.60 42.77 62.11
HFGI [20] 23.49 26.58 45.30 46.20 43.98 64.84
StyleTran. [21] 27.64 32.71 55.24 55.67 46.34 57.81
VecGAN 17.43 18.24 35.14 25.22 30.24 52.56

Table 4.4: Quantitative results for setting II for global edits. The edits that
cause global changes in the face, such as age, gender, and smile, are presented
here. Similar to local edits, we present the results in terms of the FID metric.

Specifically, for VecGAN, we set αt given in Eq. 3.3 to {0.0, 0.33, 0.5, 0.66, 1.0}, as
five different intensity values for our edits. We provide qualitative results using

this sampling strategy in Fig. 4.9 for the smile and bangs addition tasks. As

we do not enforce any sign restriction on the direction of tag-specific vectors, we

label the interpolated images with strength values as {1,2,3,4,5}.

For StyleGAN inversion-based methods, we set the strength parameter to

{1, 2, 3} for both bangs and smile edits. These models usually set the strength

to 3 for successful smile edits. As shown in Fig. 4.10, VecGAN achieves better

FID scores compared to others consistently. With the highest strength, where

the accuracy of the classifier goes to 100% for all models, we observe that FID

scores for StyleGAN inversion-based model scores drastically get worse, whereas

our results are robust. We find that the ID score worsens as the edit strength

increases for all models. That results from changes in the person and the limita-

tions of the CurricularFace model. VecGAN achieves significantly better scores
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Figure 4.9: Feature strength interpolation results for bangs and smile addition
edits. We use the z values of {0.0, 0.33, 0.5, 0.66, 1.0} to interpolate the editing
intensity to obtain the target scales.

for the BG metric than StyleGAN inversion-based models.

We provide qualitative comparisons in Fig. 4.11. StyleGAN inversion-based

methods do not faithfully reconstruct input images. They miss many details

from the background and foreground. In contrast, VecGAN achieves high fidelity

compared with the original images, with only targeted attributes manipulated

naturally and realistically. This can be observed clearly in age edits, where Vec-

GAN achieves successful edits by not making any additional changes to the input.

In contrast, StyleGAN inversion-based methods add eyeglasses very frequently.

This shows that VecGAN provides better disentanglement between correlated

attributes, e.g., age and eyeglasses. This is because our models are trained end-

to-end with labeled datasets for this task. We provide a more detailed analysis

of the representations learned in the next section.
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Figure 4.10: Plots of FID, ID, and BG metrics as we change the intensity of the
attributes. For each intensity, we measure the attribute accuracy in the x-axis.
The first column plots present results for smile removal (global attribute), and
the second column presents them for bangs addition (local attribute).
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Figure 4.11: Qualitative results of ours and competing methods. StyleGAN
inversion-based methods do not faithfully reconstruct input images. VecGAN
achieves high fidelity to the originals with only targeted attributes manipulated
naturally and realistically.

41



Chapter 5

Analysis and Discussions

5.1 Comparing End-to-end Image Translation

Networks versus StyleGAN Inversion-based

Methods

We propose an end-to-end trained image translation network in this thesis and

extensively compare our method with StyleGAN inversion-based methods. We

note the different advantages and disadvantages of both approaches.

We observe that end-to-end trained image translation networks, especially our

proposed framework, do not suffer from the reconstruction and editability trade-

off. This trade-off is pointed out for StyleGAN inversion-based methods [18].

That is, when the inversion parameters are optimized to reconstruct the input

images faithfully, they do not lie in the natural StyleGAN distribution space,

and therefore the edit quality gets poor for those high-fidelity inversions. The

advantage of our method is that it is trained end-to-end, and we learn both

reconstruction and editing together. This way, our framework learns to recon-

struct and edit the images in the distribution space of our generator, and the gap

observed in StyleGAN inversion-based methods is not present.
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StyleGAN inversion-based methods enjoy many editing capabilities, whereas

our framework only achieves pre-defined edits for which it is trained for. Those

methods that use pre-trained StyleGANs rely on StyleGAN’s semantically rich

feature organizations. The editing directions are discovered after StyleGAN is

trained. Some methods discover directions in supervised and unsupervised ways.

Supervised methods, e.g. InterfaceGAN, require labeled datasets the same as

ours. On the other hand, with unsupervised methods and text-based editing

methods, directions are explored for those that do not have labeled datasets.

For example, with the GANSpace method [26], editing directions are found for

different expressions, and with the StyleCLIP method [29], editing directions are

found for different hairstyles (Mohawk hairstyle, Bob-cut hairstyle, Afro hairstyle,

e.g.). That is an advantage of StyleGAN inversion-based methods.

5.2 Analysis of Projected Styles

We explore the behavior of encoded scales from reference images, αs. These scales

are supposed to provide information about the attribute of the image (whether

a person smiles or not) and its intensity (how big the smile is). We plot the

histograms of αs values from the dataset images for bangs, eyeglasses, hair color,

age, gender, and smile tags and use orange and blue colors (the green color is also

used for hair color) depending on their ground truth attributes from the dataset

as shown in Fig. 5.2 for VecGAN. Even if we sample our target scales with a

uniform distribution z ∈ U [0, 1), we observe that the extracted scales are closer to

a Gaussian distribution. We explain this behavior with the fact that a majority

of events in nature can be approximated with such a distribution.

For the smiling tag, αs values are mostly disentangled with a small intersection.

When we plot these plots for the base version of our framework, VecGANbase, we

remove the outliers for visualization purposes. There are some encoded scales far

away from the clusters. On the other hand, in the final version of our framework,

we do not have such a problem and do not remove any data points. As we enable

stability in training for the final version of our framework, it is assumed that the
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Figure 5.1: Comparison of αs distributions learned by VecGANbase and
VecGANfinal, for the smiling tag. As both of these plots illustrate, both ver-
sions of our framework learn an interpretable distribution for the smiling scale.
In addition, VecGANfinal succeeds in learning the smiling scale on the desired
scale range, where VecGANbase contains many examples that are out of the de-
fined range, which changes the number of bins lying in a fixed scale.

framework can learn the desired scale distribution more effectively. We compare

the αs histograms for VecGANbase and VecGANfinal in Fig. 5.1, for the smiling

tag.

Fig. 5.3a shows a visualization of the dataset images plotted based on their αs

values extracted for the smiling tag. We visualize a few samples from each bin

from the histogram provided in Fig. 5.1b using the frequency values in the scale

histogram. The visualization shows that αs values encode the intensity of the

smile. The rightmost samples have large smiles, and the leftmost samples look

almost angry. On the other hand, the images in the middle space are confusing.

We also observe many wrong labeling in the CelebA-HQ dataset by going through

the middle space.

We repeat the same analysis for the hair color tag as provided in Fig. 5.3b

since the hair color tag is a challenging one as it is expected to have a continuous

scale with no clear separation between classes. Observing the given distributions

for the hair color, we conclude the base version of our framework struggles to

cluster the three classes for the hair color tag. The final version improves on it by

presenting separate clusters for three classes for the hair color tag (considering
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the means of the Gaussian-approximated distributions), however, the learned

distribution is still imperfect to separate the images. We observe many examples

in the overlapping region, especially for the samples having the class label of

”black hair”. We visualize the dataset images based on their αs values extracted

for the hair color tag in Fig. 5.3b.

The images go from black hair to brown hair to blonde hair. We observe that

the shade of hair goes lighter, but we also note that the extracted scales are not

perfect, and there is room for improvement.

5.3 Limitations

In this section, we present the failure cases of our algorithm. We find our model to

struggle with edits when the face is present with poses that are not very common

in the dataset. For example, as shown in Fig. 5.4, in the examples in the first row

and the first example from the second row, faces are rotated and tilted, and the

model does the edits poorly in these images. We observe in some edits, artifacts

may exist, such as in the bangs removal. Sometimes they are not completely

erased. Based on our studies and our inspection of other state-of-the-art face

editing methods we present in this thesis, we conclude that even though great

improvements are accomplished, face editing remains an open problem.
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Figure 5.2: Attribute scale plots for the tags translated by our framework. As the
scale plots show, our framework successfully clusters images w.r.t. their age and
smile. Additionally, we can also cluster the remaining classes even if the learned
distribution can be improved further.
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(a) Histogram αs values for smile tag of VecGANfinal.

(b) Histogram αs values for hair color tag of VecGANfinal

Figure 5.3: Attribute scale histograms for smile and hair color tags. As the
ordering of the images show, the extracted source style scales represent a semantic
meaning for both tags.
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Figure 5.4: Failure cases of VecGAN. In our experiments, we observe that our
model struggles in cases where the face image has a pose orientation that is
uncommon in the dataset. Additionally, we also observe failure cases on ones
where the removal of an attribute changes the face significantly. In these cases,
our model tends to generate artifacts on the generated outputs.
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Chapter 6

Conclusion

This thesis introduces VecGAN, an image-to-image translation framework with

interpretable latent directions. This framework includes a deep encoder and de-

coder architecture with latent space manipulation in between. Latent space ma-

nipulation is designed as vector arithmetic, where for each attribute, a linear

direction is learned. This design is encouraged by the finding that well-trained

generative models organize their latent space as disentangled representations with

meaningful directions in a completely unsupervised way. Therefore, we also ex-

tensively compare our method with StyleGAN inversion-based methods and point

out their advantages and disadvantages compared to our method. Each change

in the architecture and loss function is extensively studied and compared with

state-of-the-arts. Experiments show the effectiveness of our framework.
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Appendix A

Additional Results

In this section we present additional results on the edits learned by our framework.

Namely, we present results from bangs, hair color, age, gender and smile edits.
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Figure A.1: Supplementary Results for bangs edits.
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Figure A.2: Supplementary Results for hair color edits.
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Figure A.3: Supplementary Results for age edits.
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Figure A.4: Supplementary Results for gender edits.

59



In
p
u
t

S
m
il
e
(+

)
In
p
u
t

S
m
il
e
(-
)

Figure A.5: Supplementary Results for smile edits.
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Appendix B

Classifier Details

To provide more details about the classifiers we use for evaluating our framework,

we provide the details of the classifiers in this section. We use two separate

classifiers for separating the outputs of bangs and smile edits, where the results

are presented in Fig. 4.10. For both classifiers, we use a ResNet-50 backbone with

a classification head using cross-entropy loss. We provide the confusion matrices

of the bangs and smile classifiers in Fig. B.1. These classifiers achieve 96% and

95% accuracy, respectively.

(a) Confusion matrix for bangs tag (b) Confusion matrix for smile tag

Figure B.1: Confusion matrices for the classifiers used in evaluation Setting II.
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Appendix C

Additional Architecture Details

In addition to the generator architecture presented in Sec. 3.1, we provide addi-

tional details about our framework in this section. We define our resampling

(upsampling/downsampling) blocks in C.1 and the discriminator used in our

framework in C.2.

C.1 Resampling Block Architecture

We build our upsampling and downsampling blocks over a shared structure shown

in Fig. C.1. This structure uses different resampling layers to downsample or

upsample the input features. For the case of upsampling, we use bilinear inter-

polation and max pooling (with a stride of 2) for downsampling. The blocks

are named as UpBlock and DownBlock, respectively. We build our blocks with

residuals using 3 × 3 convolutional filters followed by resampling layers. These

blocks include LeakyReLU as activation functions with a negative slope value of

0.2. These blocks also have an instance normalization option, which is enabled

for the generator and disabled for the discriminator.
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Figure C.1: Architecture of up/downsampling blocks in VecGAN. We use bilinear

interpolation for upsampling and max pooling for downsampling blocks. Option-

ally, the residual blocks include instance normalization layers. In case they are

enabled, we apply them before the LeakyReLU activations.

C.2 Discriminator Architecture

Like our generator architecture, the discriminator also uses an architecture with

increasing channel size and decreasing resolution. We build our discriminator

with the channel sizes used in the generator, which downsamples our 256 × 256

input to 1× 1 features. Unlike the generator, our discriminator does not use any

instance normalization layers in the DownBlock structures it contains.

Following the convolutional counterpart, we implement an attribute-specific

fully connected layer to retrieve the final output from the discriminator network.

We implement this with 1× 1 convolutional layers, with separate layers for each

tag-attribute pair. Our fully connected layers take the concatenation of the down-

sampled features and the target style scale as input, achieving adversarial learning

sensitive to the target style scale.
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Figure C.2: Discriminator architecture of VecGAN. Like our generator, we build

our discriminator with residual downsampling blocks shown in Fig. C.1 where

instance normalization is disabled. We output two different values from our dis-

criminator, which are used to learn latent and reference-guided synthesis. The

outputs are separated as we wanted to learn these two translations independently.

In our experiments, we experienced that this strategy results in better conver-

gence.
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